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Abstract — We illustrate, through a case study, a novel 
combination of probabilistic Monte Carlo methods and 
deterministic worst-case methods to perform model-
based trajectory prediction in Air Traffic Control. The 
objective is that of computing and updating predictions 
of the trajectory of an aircraft on the basis of received 
observations. We assume that uncertainty in computing 
the predictions derives from observation errors, from the 
action of future winds and from inexact knowledge of 
the mass of the aircraft. Our novel approach provides 
worst-case prediction sets in which the future trajectory 
of the aircraft is guaranteed to belong and, at the same 
time, an empirical distribution of the most probable 
trajectories which can be used to compute various 
estimates such as the probability of conflict and the 
expected time of arrival. The case study is developed 
using the aircraft performance model developed by the 
EUROCONTROL Experimental Centre in BADA (Base 
of Aircraft DAta). 
 

I. INTRODUCTION 

 
The ability to compute a reliable prediction of the 

trajectory of an aircraft on a future horizon of the order 
of tens of minutes is an essential part of Air Traffic 
Control (ATC).  Increasing levels of traffic both in 
Europe and in the US demand for more advanced 
trajectory prediction algorithms in order to sustain the 
performance of ATC - see e.g. Paglione et al. [1]. 

A trajectory prediction is calculated on the basis of 
the aircraft estimated position and state, some intent 
information, weather information and a performance 
model. The aircraft position and state can be estimated 
from radar measurements or can be broadcast by the 
aircraft itself, such as in the Mode-S [2] and ADS-B [3] 
systems. The intent information includes controller 
instructions and operational procedures (e.g. how a 
descent is executed). The weather information includes 
predicted winds and temperature profiles. The 
performance model describes the aircraft dynamic 
behavior and is essentially needed only to calculate 
trajectories which include a vertical displacement because 
commercial aircraft in level flight can be well modeled by 
simple kinematic models - see e.g. Paielli[4]. 

In a prediction on a future horizon of the order of 

tens of minutes there is unavoidable uncertainty. In the 
seminal papers of Paielli and Erzberger[5], [6], on the use 
of trajectory prediction to assess the probability of a 
future loss of safe separation between two aircraft 
(conflict probability), the approach to take into account 
uncertainty is to superimpose a distribution of position 
errors to a predicted nominal trajectory. The shape of the 
distribution of position errors is estimated on the basis of 
previous radar track records - see also Yang and 
Kuchar[7]. In Hu et al.[8] simple kinematic models 
driven by a stochastic wind field are used to investigate 
on the effect of spatial wind correlation on collision 
probability in level flight. Chaloulos and Lygeros[9] 
present a similar study based on Monte Carlo simulations 
of a more sophisticated wind model. The problem of 
estimating the probability of future conflicts and mid-air 
collisions has been an important benchmark for the 
development of advanced speed-up techniques for 
Monte Carlo methods – see e.g. Blom et al.[10]. Worst-
case assumptions have been adopted for example in 
Tomlin et al.[11] for the purpose of designing safe 
maneuvers to resolve the encounter of a set of aircraft in 
level flight. 

In this paper we present a case study devoted to the 
idea of combining Monte Carlo and worst-case methods 
to perform trajectory prediction. The idea of a combined 
worst-case and Monte Carlo methodology has been 
recently proposed by Balestrino et al.[12], [13]. In the 
case study we are concerned with the prediction of the 
trajectory of an aircraft on a leg of flight which includes a 
descent phase. The unknowns, in calculating the 
prediction from the point of view of ATC, are the mass 
of the aircraft and the action of the wind. These are 
realistic uncertainties in ATC[14], [15]. The purpose of 
the case study is to illustrate the advantages of using an 
aircraft performance model to calculate worst-case and 
probabilistic predictions at the same time. Here we adopt 
the aircraft performance model developed by the 
EUROCONTROL Experimental Centre in BADA (Base 
of Aircraft DAta)[16]. 

The paper is organized as follows. In the next section 
we review the Monte Carlo and worst-case approaches to 
estimation and prediction. In The case study we describe 
the design of the case study, i.e. the objective and the 
assumptions on the intent, the wind and the performance 



model. In Simulation example we illustrate the 
performance of our approach in different simulation 
scenarios. In the last section we state our findings and 
conclude the paper. 

The solution of the case study has entailed the 
development of tailored algorithms to implement our 
approach within the full non-linear performance model 
developed in BADA [16]. A detailed technical 
presentation of the algorithms goes beyond the scope of 
this paper; a longer technical report is available upon 
request. 
 

II. THE METHODS 

 

In the stochastic Monte Carlo approach an empirical 
distribution of trajectory predictions is constructed by 
drawing random samples from Bayesian prior 
distributions on the initial state and on the unknowns (in 
our case the mass of the aircraft and the wind). The aim 
is to approximate the a posteriori distribution of the 
future trajectory given the priors on the unknowns and 
given the observations and the likelihood of observation 
errors. The approach extends the applicability of the 
popular Kalman filtering techniques to general non-
Gaussian and non-linear models. On-line applications, 
such as trajectory prediction, require a computationally 
efficient implementation usually denoted sequential 
Monte Carlo or particle filtering - see e.g. Blom et al.[10], 
Van der Merwe et al.[17], Doucet et al.[18], Arulampalam 
et al.[19]. In particle filtering, the sampled predictions are 
computed sequentially on the basis of the last received 
observation without the need to reprocess older 
observations each time a new observation is received. 
The appeal of a Monte Carlo approach stems from the 
fact that it can be used in very complex problems and, in 
general, is straightforward to implement since it simply 
requires to run simulations of the model. The sampled 
trajectory predictions obtained in the Monte Carlo 
approach can be used to compute various estimates such 
as the probability of conflict with another aircraft and the 
expected time of arrival. 

In the worst-case approach the aim is to compute 
guaranteed predictions in the form of sets containing all 
the trajectories which are consistent with the datum that 
the initial state, the unknowns and the observation errors 
belong to some given bounded uncertainty sets. In the 
context of estimation and filtering for dynamical systems 
this methodology is also referred to as the set-
membership approach - see e.g. Bertsekas and Rhodes 
[20], Polyak et al.[21]. In the set-membership approach 
the prediction set is updated recursively. The initial 
predictions are only consistent with the given uncertainty 
sets of the initial state and of the unknowns; which are 
defined by existing knowledge on the model. In our case, 
the mass of the aircraft is known to be confined between 
a known minimum and a known maximum and it can be 
assumed that errors on the predicted winds respect to 
some credible bounds estimated from archived weather 
reports. The uncertainty sets are updated each time a new 
observation is received by excluding values of the 
unknowns which give rise to predictions which are not 
consistent with the received observation. Each time the 

uncertainty set of the unknowns is updated, a new set of 
guaranteed predictions is computed accordingly. The 
attractive feature of this approach is that the uncertainty 
set of the unknowns and the set of predictions are 
systematically reduced at the reception of each new 
observation while remaining guaranteed uncertainty sets 
in the worst-case sense. 

The idea of combining Monte Carlo and set-
membership methods has been proposed by Balestrino et 
al.[12], [13] as a novel solution to the problem of 
choosing representative values from the uncertainty set 
provided by a set-membership approach. The problem of 
choosing representative values is an important one 
because such values allow one to calculate useful 
quantities which can be used as ‘indicative’ estimates 
within the worst-case bounds. In the previous literature, 
this problem has been tackled with a deterministic 
approach consisting in the choice of nominal values 
corresponding to some geometrical definition of a center 
of the uncertainty set - see e.g. Bai et al.[22]. Balestrino et 
al.[12], [13] proposed instead the use of particle filters to 
construct an approximate a posteriori Bayesian 
distribution over the worst-case uncertainty sets. In this 
way one can use representative probabilistic estimates, 
such as the probability of conflict and the expected time 
of arrival, within the worst-case bounds. Balestrino et 
al.[12], [13] put forward this idea by developing 
combined Monte Carlo and set-membership algorithms 
for the case of a linear model. In this case study, we 
adopt the same general idea of combining Monte Carlo 
and set-membership methods but without restricting the 
scope to linear models because our aim is to employ the 
full non-linear performance model developed in 
BADA[16]. 

 
III. THE CASE STUDY 

 
We consider a typical scenario in a Terminal 

Maneuvering Area (TMA) sector - see e.g. Lecchini-
Visintini et al.[23]. In a TMA sector, aircraft, towards the 
end of their flight, descend from cruising altitude, around 
30000 ft and above, to the entry points of the Approach 
Sector of the destination airport, which are typically 
between 5000 ft and 15000 ft. In our study, we 
specifically address the problem of performing trajectory 
prediction for an aircraft on a leg of flight composed by 
the following three phases: an initial phase in level flight 
at 30000 ft, followed by a descent to 10000ft and a final 
phase again in level flight at 10000ft.  

The intent of the aircraft and the uncertainty affecting 
its trajectory from the point of view of ATC are 
illustrated in Figure 1. The intent is specified as follows. 
The aircraft is initially at 30000 ft in straight level flight. 
In the coordinate system of Figure 1, which has the 
horizontal axis aligned to the direction of the flight, the 
leg of flight of interest begins at (0 nmi, 30000 ft). The 
Top of Descent (ToD) is set at (10 nmi, 30000 ft). The 
aircraft will continue to travel in straight level flight and 
will start the descent phase when the ToD is reached. 
The descent phase will be executed at controlled vertical 
speed, or, equivalently, at controlled Rate of Climb OR 
Descent (ROCD). Here it is assumed that during the 
descent phase the pilot will use the Vertical Navigation



 
Fig. 1. A schematic representation of the flight considered in this case study. 

 
(VNAV) system to follow a desired vertical path which 
has been issued by ATC. The aircraft will resume level 
flight when the altitude of 10000 ft is reached. The end 
of the leg of flight of interest is set at (110 nmi, 10000 ft).  

We assume that the specified intent will be executed 
with no navigation errors. This assumption implies that: 
(i) the aircraft will fly on a straight route with null cross 
track error; (ii) the aircraft will begin the descent phase 
exactly when the ToD is reached; and (iii) the aircraft will 
execute the vertical path issued by ATC with no vertical 
navigation errors. From the point of view of ATC, 
uncertainty in the prediction of the aircraft trajectory will 
arise from the lack of knowledge of the exact mass of the 
aircraft in the prediction model, from the errors between 
the predicted and the actual winds encountered by the 
aircraft and from the observation errors. This uncertainty 
will affect mainly the prediction of the along track 
position of the aircraft, e.g. the location of the Bottom of 
Descent (BoD), and the Time of Arrival (TA). Our 
assumptions reflect the fact that current navigation 
systems allow the pilot to follow the ATC instructions 
with small errors and allow us to focus on the latter 
sources of uncertainty which would then be the 
predominant ones.  

In the reminder of this section we introduce the 
models employed in this case study. 
 

A. The observation model 
 

We assume that radar observations are received every 
6 sec and that the likelihood of observation errors has the 
form of a Gaussian density function with zero mean and 

variance σ2= 500 m2 truncated at 2σ. This assumption 
implies that each observation determines an along-track 
interval of length 4σ ≈ 90 m centered on the observation 
itself, in which the aircraft is guaranteed to be. Let us 
recall that the assumption that observation errors belong 
to a bounded set is required otherwise set-membership 
techniques cannot provide guaranteed predictions. Such 
an assumption corresponds to assume that outliers, i.e. 

completely wrong observations, never occur, or, if they 
occur, that they are detected and automatically discarded. 

We assume that the aircraft airspeed is measured as 
well. This assumption is justified if Mode-S[2] or ADS-
B[3]  broadcast systems are in operation. In this case we 
assume that the likelihood of the air speed measurement 
errors has the form of a Gaussian density function with 

zero mean and variance σ2=10 (m/s)2 truncated at 2σ. 
 

B. The wind model 
 
In our case study the largest deviations from nominal 

predictions are caused by the action of the wind. 
Nominal wind predictions are usually available. However, 
an error in the prediction of the winds should still be 
taken into account in order to provide reliable trajectory 
predictions. A convenient choice is to consider the wind 
as having two components: a nominal one, which 
corresponds to the predicted wind, plus an additive 
component, which corresponds to the prediction error. 
We model the additive error as a zero mean random 
variable. Just for the sake of simplicity, we will assume 
that the nominal wind is zero. In our approach, a non-
zero nominal component of the wind could be easily 
taken into account and be included in the model as a 
known offset to the mean of the ‘stochastic wind’.  

We assume that the wind remains constant at 
constant altitude. This assumption reflects the fact that 
winds at the same altitude are far more correlated than 
winds at different altitudes - see Cole et al. [24], 
Chaloulos and Lygeros [9]. In particular, this assumption 
can be expected to be realistic for the relatively small 
distances traveled in our case study. The model of the 
wind is based on an altitude grid consisting of 21 levels 

*
ih , I = 1, .., 21 equally spaced at 1000 ft, from 10000 ft 

to 30000 ft. The values of the wind at these altitudes are 
generated as samples from a multivariate Gaussian 
distribution with correlation matrix which reproduce the 
vertical correlation of the wind. The support domain of 



the multivariate Gaussian distribution is truncated in 
such a way that the winds, and the difference between 
the winds at adjacent altitude levels, respect the following 
bounds: 
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(similar but less conservative bounds have been used in 
Kitsios and Lygeros [25]). In a similar way as it has been 
done before for the observation errors, these bounds are 
introduced in order to be able to calculate guaranteed 
predictions. It is important to introduce bounds also on 
the difference between the winds at adjacent altitude 
levels because the gradient of the wind has an important 
role in the aircraft performance model which will be 
introduced in the following subsection. The values of the 
winds at intermediate altitudes are generated by linear 
interpolation. A wind profile generated by our model is 
displayed in Figure 2. Notice that, since the wind velocity 
changes linearly between two adjacent levels, the gradient 
of the wind with respect to the altitude is piecewise 
constant.  

The winds generated with our model are consistent 
with the accuracy studies performed on the database of 
the Rapid Update Cycle [24] performed by Schwartz et al. 
[26]. In their analysis the percentage of wind prediction 
errors greater than 10 m/s was 3 % overall, and 7 % in 
the worst month. Our model implies that the aircraft in 
level flight encounters a constant wind, and that the wind 
becomes instead a function of the altitude during the 
descent phase. More complex wind models can be easily 
introduced without affecting the applicability of our 
approach. Worst-case computations require only the 
values of the bounds on the winds introduced above. 
Monte Carlo methods require only to run many 
simulations of the adopted probabilistic wind model, 
such as the one used here, or a more complex one, such 
as the one used by Chaloulos and Lygeros[9]. 

 
 

C. The aircraft performance model 
 
In level flight, aircraft maintain a constant airspeed 

which depends on the altitude. In this phase the motion 
of the aircraft is described well by a simple kinematic 
model - see e.g. Paielli [4]. Our assumption of null cross 
track errors simplifies the model to the following 
equation for the along track component: 

 

( ) ( ) TSwTSvkxkx ⋅+⋅+=+1                                      (2) 

 
where TS is the discretization step, w is the wind speed 
and v is the true airspeed of the aircraft.  The true air  
speed in level flight is derived form the Calibrated Air 
Speed (CAS) which is a known constant parameter for 
each aircraft type. CAS is constant above 10000 ft until 
Mach transition altitude, and it can be converted into a 
True Air Speed (TAS) once the altitude level is known 
(see [16, eq (3.2-12)].).  In eq  [16, eq (3.2-12)] we 

 
Fig. 2. (a) a possible realization of the wind profile; (b) 

the corresponding realization of the gradient of the wind 

with respect to altitude. 

 

assumed that the pressure 0P , the temperature 0Temp  

and the density 0ρ  at sea level are equal to their 

International Standard Atmosphere (ISA) values . The 

initial position ( )0x  is supposed to be known within the 

accuracy of radar observations.   

When the aircraft reaches the ToD, the model 

switches to a more complex one. In accordance with the 

BADA documentation [16], we can assume that during 

the descent the aircraft follows a nominal thrust profile 

which depends on the altitude. In addition, since we also 

assume that the aircraft follows a known vertical profile 

with no navigation errors, we actually fall under case (b) 

in [16, pag C7]. In this case, the ROCD, the altitude and 

the thrust in the BADA performance model become 

known at each step. Hence, the equations of the 

performance model can be written as: 
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where T is the thrust, D is the drag, g is acceleration 

gravity (9.81 m/s2), γ  is the flight path angle and WG is 

the gradient of the wind with respect to the altitude. The 
system of equation is written emphasizing the role of the 
ROCD. 
The descent thrust T and the drag D in (3) are computed 
as in (4) and (6) using correction factors and nominal 
values that are typical of the particular aircraft and can be 
found in BADA [16]. From now on, for notational 

convenience, ( )( )khT  and ( ) ( ) ( )( )km,kv,khD  will be 

simply denoted by ( )kT  and ( )kD .   

We have: 



 
Fig. 3. Trajectory predictions drawn every 60 sec: (a) initial predictions; (b) half way predictions. The black circles represent 
the real trajectory; the red dots represent the most probable trajectories; the lines represent the guaranteed prediction 
 

( ) ( )kTCkT blimcmaxhigh,Tdes ×=                 (4) 

 

where ( )kT blimcmax  for a Jet engine type can be 

computed as 
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where the drag coefficient ( )kCD  is computed as 
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while the lift coefficient ( )kCL  is 
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In our case, the correction for the bank angle ( )kϕ , in 

the equation of the lift coefficient, can be neglected. In 

the drag equation (6), ( )kρ  is the air density, S is the 

wing reference area and ( )kv  is the true airspeed as 

usual. Finally, ( )kρ  has been computed solely as a 

function of the altitude of the aircraft like: 
 

( )
( )

1

0

0

−−









=

Rk

g

T

Temp

kTemp
k ρρ                 (9) 

 
where R is the real gas constant for air, 

( )22
04287 Ks/m.R = , Tk  is the International Standard 

Atmosphere (ISA) temperature gradient with altitude 

below the tropopause, m/K.kT 00650−= ; 0ρ  and 

0Temp  are density and temperature at sea level, here 

considered equal to their ISA values, 
3

0 2251 m/kg.ISA == ρρ , K.TempTemp ISA 152880 == , 

and ( )kTemp  can be computed as a function of the 

altitude ( )
( )

1000
560

kh
.TempkTemp −= . 

The unknown quantities in the above model are the 
mass m, the wind w and the gradient of the wind WG. We 
describe uncertainty on the mass through a uniform prior 
distribution between a maximum value and a minimum 
value which depend on the type of aircraft. The wind w 
and the gradient of the wind WG play the role of 
disturbances. 
 

IV. SIMULATION EXAMPLE 
 

In this section, we illustrate the performance of our 
combined worst case and Monte Carlo algorithms.  

In the following simulations, the real trajectory of the 
aircraft is computed using randomly generated values of 
the unknowns and the coefficients of an A340 aircraft 
[16]. The actual initial position is −40 m. Each value of 
the unknowns has been generated according to its 
probabilistic model. The aircraft mass has been sampled 
between the minimum and the maximum values allowed 

for an A340 and is 2.3923·105Kg. The winds 
encountered during the flight are generated according to 
the wind model introduced in the previous section. The 
actual profile of the winds is the one shown in Figure 2. 
In the figures of this section the real position of the 
aircraft will be represented by black circles. 

In Figure 3.(a) a trajectory prediction, made at the 
beginning of the flight, is displayed. In the figure, the 
predictions are displayed at intervals of 60 sec. The 
guaranteed prediction sets have a trapezoidal shape. The 
empirical distribution of trajectories generated by the 
Monte Carlo approach, which represents the most 
probable trajectories within the guaranteed set, is 
represented by red dots. Notice how the empirical 
distribution of the most probable trajectories is 
concentrated around the real trajectory and that the real



 

 
Fig. 4. Trajectory predictions in the actual worst case drawn every 60 sec: (a) initial predictions; (b) half way predictions. The 
black circles represent the real trajectory; the red dots represent the most probable trajectories; the lines represent the 
guaranteed prediction sets. 
 

 
Fig. 5. Evolution of the predicted time of arrival during the flight: (a) in the case illustrated in Figure 3; (b) in the case 
illustrated in Figure 4. The lines represent the intervals in which the time of arrival is guaranteed to belong. The dots 
represent the expected time of arrival.   
 
trajectory is always contained in the guaranteed 
prediction sets. In Figure 3.(b) a trajectory prediction 
made after the first half of the flight is displayed. In this 
figure, notice that the trapezoidal guaranteed predictions 
sets have collapsed to lines. The reason is that we 
assumed that the descent is executed with no vertical 
navigation errors. Hence, there is no uncertainty in the 
vertical displacement of the aircraft once the ToD has 
been passed. Figure 5.(a) displays the evolution of the 
guaranteed prediction intervals for the time of arrival, 
and of the expected time of arrival, during the flight.  

An example where the aircraft is following a 
trajectory on the border of the feasible region is displayed 
in Figure 4. Figure 4.(a) displays again the trajectory 
prediction performed at the beginning of the flight, while 
Figure 4.(b) shows the prediction of the remaining 
trajectory when the aircraft has finished the first half of 
the flight. The reason why the aircraft is on the border of 
the guaranteed set is that, in this case, the mass of the 
aircraft and the wind profile were deliberately chosen to 
be at their worst admissible values. Notice that this 
situation is very unlikely to occur in practice, which is the 
reason why particles are far from the real trajectory in 

Figure 4.(a) and even after many measurements they still 
do not predict precisely the rest of the trajectory as 
shown in Figure 4.(b). Figure 5.(b) displays the evolution 
of the guaranteed prediction intervals for the time of 
arrival and of the expected time of arrival during this 
flight. Convergence to the real value is slower than in 
Figure 5.(a) because of the unlikely values of the 
uncertain quantities in this second case. 
 

V. CONCLUSIONS 
 

We have presented a case study devoted to the use of 
a combined worst-case and Monte Carlo method to 
perform trajectory predictions in Air Traffic Control. 
Each time a new observation becomes available, our 
algorithms provide: 
• the worst-case prediction sets in which the aircraft 
trajectory is guaranteed to belong at each future time 
instant; and 
• an empirical distribution which characterizes the 
most probable future trajectories and which can be used 
to compute estimates such as the expected time of 
arrival. 



We envisage that our work will be useful to support 
novel conflict detection and resolution tools. An 
important aspect of our approach is that we have been 
able to employ the full non-linear aircraft performance 
model of BADA[16] without the need for the 
construction of any linearized approximate model, which 
is instead a common step in may other estimation and 
prediction methods. Future work will focus on the 
development of algorithms for the prediction of the 
trajectory during an ‘open descent’ when thrust and 
airspeed are controlled while ROCD is determined as 
consequence, i.e. case (a) in [16, pag C7]. In this case 
study we have assumed that the aircraft executes the 
prescribed intent with no navigation errors. Our 
approach does not impose any conceptual limitation to 
the development of prediction algorithms in which such 
an assumption is relaxed. 
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